HADWIGER’S CONJECTURE FOR GRAPHS WITH INFINITE CHROMATIC NUMBER

DOMINIC VAN DER ZYPEN

M&S Software Engineering
Morgenstrasse 129
CH-3018 Bern
Switzerland
e-mail: dominic.zypen@gmail.com

Abstract

We construct a connected graph H such that
(i) $\chi(H) = \omega$;
(ii) K_ω, the complete graph on ω points, is not a minor of H.

Therefore Hadwiger's Conjecture does not hold for graphs with infinite coloring number.

1. Introduction

In this note we are only concerned with simple undirected graphs $G = (V, E)$ where V is a set and $E \subseteq \mathcal{P}_2(V)$ where
\[\mathcal{P}_2(V) = \{\{x, y\}: x, y \in V \text{ and } x \neq y\}. \]

We also require that $V \cap E = \emptyset$ to avoid notational ambiguities. We denote the vertex set of a graph G by $V(G)$ and the edge set by $E(G)$. Moreover, for any cardinal α we denote the complete graph on α points by K_α.

For any graph G, disjoint subsets $S, T \subseteq V(G)$ are said to be connected to each other if there are $s \in S, t \in T$ with $\{s, t\} \in E(G)$. Note

2010 Mathematics Subject Classification: 05C15, 05C83
Keywords and phrases: Graph coloring, Hadwiger conjecture.
that K_α is a minor of a graph G if and only if there is a collection
\{ $S_\beta : \beta \in \alpha$ \} of nonempty, connected and pairwise disjoint subsets of
$V(G)$ such that for all $\beta, \gamma \in \alpha$ with $\beta \neq \gamma$ the sets S_β and S_γ are
connected to each other. We will need the following observation later on:

Fact 1.1. For any graph G, finite or infinite, the following are equivalent:

(i) G is connected;

(ii) If $S, T \subseteq V(G)$ are nonempty and disjoint such that $S \cup T = V(G)$
then S, T are connected to each other.

2. The Construction

In [1], Hadwiger formulated his well-known and deep conjecture,
linking the chromatic number $\chi(G)$ of a graph G with clique minors. He
conjectured that if $\chi(G) = n \in \mathbb{N}$ then K_n is a minor of G. In the
following we present a connected graph H with chromatic number ω such
that K_ω is not a minor of H. Let \mathbb{N} be the set of positive integers. For
any $n \in \mathbb{N}$ we let

\[C_n = \{1, \ldots, n\} \times \{n\} \]

and set $V(H) = \bigcup_{n \in \mathbb{N}} C_n$. As for the edge set of H, we define

\[E(H) = \{((1, n), (1, n + 1)): n \in \mathbb{N}\} \cup \bigcup_{n \in \mathbb{N}} P_2(C_n). \]

Proposition 2.1. H is connected.

Proof. Using fact 1.1 we assume we are given non-empty disjoint
subsets S, T of $V(H)$ such that $S \cup T = V(H)$ and we want to show that
S, T are connected to each other. We may assume that $C_1 = \{(1, 1)\} \subseteq S$.
Let $n_0 = \min\{n \in \mathbb{N} : C_n \cap T \neq \emptyset\}$. Note that $n_0 > 1$. We distinguish
two cases: If $(1, n_0) \in T$ then by minimality of n_0 we have
$(1, n_0 - 1) \in S$ and $\{(1, n_0 - 1), (1, n_0)\} \in E(H)$ so S, T are connected to
each other. If \((1, n_0) \not\in T\) then \((1, n_0) \in S\), so pick \((b, n_0) \in C_{n_0}\) with \((b, n_0) \in T\), so since \(\mathcal{P}_2(C_{n_0}) \subseteq E(H)\), the sets \(S, T\) are again connected to each other.

Proposition 2.2. \(\chi(H) = \omega\).

Proof. Since we have \(\text{card } (V(H)) = \omega\) we get \(\chi(H) \leq \omega\). Moreover, each \(C_n\) is a complete subgraph of \(H\), so \(H\) cannot be colored with finitely many colors.

For the remainder of this note, we assume that \(\{S_n : n \in \omega\}\) is a collection of nonempty, connected, pairwise disjoint subsets of \(H\) such that for \(m \neq n\) the sets \(S_n, S_m\) are connected to each other. Our goal is to show that such a collection cannot exist.

First, we need a simple observation on what a connected subset of \(H\) looks like. If \(S \subseteq V(H)\) we define \(I(S) = \{n \in \mathbb{N} : C_n \cap S \neq \emptyset\}\).

Lemma 2.3. Suppose \(S \subseteq V(H)\) is connected and \(m < n \in I(S)\). Then for all \(x \in \mathbb{N}\) with \(m \leq x \leq n\) we have \((1, x) \in S\).

Proof. If \((1, m) \not\in S\) then \(T = S \cap C_m\) and \(S \setminus T\) are disjoint, nonempty and not connected to each other. By Fact 1.1, \(S\) is not connected, contradicting our assumption. A similar argument shows that \((1, n) \in S\). Suppose there is \(x\) with \(m < x < n\) and \((1, x) \not\in S\). Then set \(T = \{(i, j) \in S : j < x\}\). Again, \(T\) and \(S \setminus T\) are nonempty and not connected to each other, so \(S\) is not connected, contradicting our assumption.

If \(\{S_n : n \in \omega\}\) is a collection of subsets of \(V(H)\) as described above, then for every \(k \in \mathbb{N}\) the set of neighbors of \(S_k\), which is denoted by \(N(S_k)\), must be infinite, as the next lemma shows, this implies that \(I(S_k)\) must be infinite for all \(k \in \mathbb{N}\).

Lemma 2.4. If \(S \subseteq V(H)\) is such that \(I(S)\) is finite, then \(N(S)\) is finite.
Proof. Let \(m = \max(I_S) \). Then \(N(S) \subseteq \bigcup_{i=1}^{m+1} C_i \), which is a finite set.

Now we go back to our assumption that \(\{S_n : n \in \omega\} \) is a collection of nonempty, connected, pairwise disjoint subsets of \(H \) such that for \(m \neq n \) the sets \(S_m, S_n \) are connected to each other. We consider just two of these sets, say \(S_0, S_1 \). Because of lemma 2.4, the sets \(I(S_0) \) and \(I(S_1) \) are infinite. For \(k = 0, 1 \) let \(\mu_k = \min(I(S_k)) \). We may assume that \(\mu_0 \leq \mu_1 \). Since \(I(S_0) \) is infinite, there is \(n \in I(S_0) \) with \(n \geq \mu_1 \). So lemma 2.3 implies that \((1, \mu_1) \in S_0 \cap S_1 \), contradicting the assumption that the \(S_k \) are pairwise disjoint. So we established:

Proposition 2.5. The complete graph \(K_{\omega} \) is not a minor of \(H \).

References